archive
clear month →

All issues, grouped by month.

Jump between months on the left, then skim titles in a tight grid-aligned list. Hover any row for synopsis, tags, and stats.

month
2 issues

November 2025

  1. SatNov29
    Cover for Opus 4.5 takes the lead.

    Opus 4.5 takes the lead.

    Anthropic has aggressively redefined the agent landscape with the release of Opus 4.5, which now dominates benchmarks like SWE-Bench with an 87% success rate using sub-agents. Beyond raw performance, the model introduces a 3x cost reduction and persistent memory features, making long-horizon, autonomous engineering workflows commercially viable for the first time. Parallel to this, DeepSeek-Math-V2 is proving that architectural innovation rivals scale. By utilizing a generator-verifier loop and reinforcement learning, it achieved the first open-source Gold on the IMO, showcasing a reasoning pattern that is likely to become standard for reliable agentic thought processes. However, as capabilities scale, so do the attack vectors. Security expert Simon Willison issued a critical clarification this week distinguishing prompt injection from jailbreaking, noting that tool-using agents (such as those on MCP servers) face unique risks of data exfiltration that current guardrails cannot reliably stop. The industry is moving fast: agents are becoming smarter and cheaper, but the security layer remains dangerously thin.

    description

    Anthropic has aggressively redefined the agent landscape with the release of Opus 4.5, which now dominates benchmarks like SWE-Bench with an 87% success rate using sub-agents. Beyond raw performance, the model introduces a 3x cost reduction and persistent memory features, making long-horizon, autonomous engineering workflows commercially viable for the first time. Parallel to this, DeepSeek-Math-V2 is proving that architectural innovation rivals scale. By utilizing a generator-verifier loop and reinforcement learning, it achieved the first open-source Gold on the IMO, showcasing a reasoning pattern that is likely to become standard for reliable agentic thought processes. However, as capabilities scale, so do the attack vectors. Security expert Simon Willison issued a critical clarification this week distinguishing prompt injection from jailbreaking, noting that tool-using agents (such as those on MCP servers) face unique risks of data exfiltration that current guardrails cannot reliably stop. The industry is moving fast: agents are becoming smarter and cheaper, but the security layer remains dangerously thin.

    agentmodelsecurityHeadlineHungamabeyangbindureddy
    140m saved529 sources4 min read
  2. SatNov29
    Cover for Reasoning loops and hardware agents

    Reasoning loops and hardware agents

    This week, agentic capabilities took a leap forward in both proprietary and open ecosystems. Claude Opus 4.5 has redefined the ceiling for coding agents, hitting a record 80.9% on SWE-Bench Verified and dominating complex reasoning tasks with a 91.5% score on agentic evals. In parallel, DeepSeekMath-V2 proved that open-source models can rival giants, using a novel generator-verifier loop to achieve IMO Gold Medal status—demonstrating that self-verification is key to reliable reasoning. The application layer is expanding too: Flux is bringing agentic workflows to hardware design, automating schematics and component sourcing in a browser-based CAD tool dubbed the 'Devin for Hardware.' Driving these breakthroughs is a shift in training philosophy, with engineers increasingly betting on Reinforcement Learning (RL) pipelines over simple fine-tuning to handle the complex, multi-step planning required for autonomous agents.

    description

    This week, agentic capabilities took a leap forward in both proprietary and open ecosystems. Claude Opus 4.5 has redefined the ceiling for coding agents, hitting a record 80.9% on SWE-Bench Verified and dominating complex reasoning tasks with a 91.5% score on agentic evals. In parallel, DeepSeekMath-V2 proved that open-source models can rival giants, using a novel generator-verifier loop to achieve IMO Gold Medal status—demonstrating that self-verification is key to reliable reasoning. The application layer is expanding too: Flux is bringing agentic workflows to hardware design, automating schematics and component sourcing in a browser-based CAD tool dubbed the 'Devin for Hardware.' Driving these breakthroughs is a shift in training philosophy, with engineers increasingly betting on Reinforcement Learning (RL) pipelines over simple fine-tuning to handle the complex, multi-step planning required for autonomous agents.

    agenthardwareperformanceresearchtrainingAskPerplexity
    140m saved523 sources5 min read